1 solutions

  • 0
    @ 2024-12-10 22:27:30

    C++ :

    /*对于每个建筑物,只需要找到其能够扩展到的最大宽度即可。也就是这个建筑物的左右两边
    的比它低或等于它的建筑物个数。如何用单调队列呢?我们从1~n依次进队,维护一个单调
    递减序列。每次加入元素后维护其单调性,当然这样做必然会使一些元素出队,出队的元素
    一定要比当前加入的元素小,也就是说当前元素就是出队的元素能在右侧达到的最远的建筑物!
    注意,要让h[n+1]=0并且让该元素入队一次(会使当前队列中的所有元素出队),保证每个
    元素都有其“右极限”的值。要求“左极限”同理,只需从n~0循环即可,注意0这道题是对
    单调队列的变形使用。由于问题的结果具有单调性,很好的利用出队元素的特性.*/
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    using namespace std;
    long long q[400001],l[400001],r[400001],a[400001];
    long long n,head,tail;
    int main()
    {
    	//freopen("gg6.in","r",stdin);
    	//freopen("gg6.out","w",stdout);
    	cin>>n;
    	for(int i=1;i<=n;i++)cin>>a[i];
    	head=1;tail=0;
    	for(int i=1;i<=n+1;i++)
    	{
    		while(head<=tail && a[q[tail]]>a[i])
    		{
    			r[q[tail]]=i;
    			tail--;
    		}
    		tail++;
    		q[tail]=i;
    	}
    	head=1;tail=0;
    	for(int i=n;i>=0;i--)
    	{
    		while(head<=tail && a[q[tail]]>a[i])
    		{
    			l[q[tail]]=i;
    			tail--;
    		}
    		tail++;
    		q[tail]=i;
    	}
    	long long tot=0;
    	for(int i=1;i<=n;i++)
    		if(tot<(r[i]-l[i]-1)*a[i])
    		{
    			//cout<<r[i]-l[i]<<' '<<a[i]<<endl;
    			tot=(r[i]-l[i]-1)*a[i];
    		}
    	cout<<tot<<endl;
    }
    

    Pascal :

    var
       l,r,q,a:array[0..400005] of longint;
       ans:qword;
       n,m,head,tail,i:longint;
    function max(xx,yy:qword):qword;
    begin
       if xx<=yy then exit(yy);
        exit(xx);
    end;
    
    begin
       readln(n);
       for i:=1 to n do
        read(a[i]);
       l[1]:=1;q[1]:=1;head:=1;tail:=1;
       for i:=2 to n do
         begin
           while (tail>=head) and (a[q[tail]]>=a[i]) do dec(tail);
           l[i]:=q[tail]+1;
           inc(tail); q[tail]:=i;
         end;
       q[1]:=n+1;head:=1;tail:=1;a[n+1]:=0;
       for i:=n downto 1 do
         begin
           while (tail>=head) and(a[q[tail]]>=a[i]) do dec(tail);
           r[i]:=q[tail]-1;
           inc(tail);q[tail]:=i;
         end;
      ans:=0;
      for i:=1 to n do
         ans:=max(ans,qword(a[i])*(r[i]-l[i]+1));
      writeln(ans);
    end.
    

    Java :

    import java.util.Scanner;
    
    public class Main {
    
        public int largestArea(int[] height){
            if(height == null || height.length == 0) return 0;
            return largestArea(height, height.length);
        }
    
        private int largestArea(int[] height, int n) {
            int[]left = new int[n];
            int[]right = new int[n];
            left[0] = 0;
            right[n-1] = n-1;
    
            for (int i = 1; i < n; i++) {
                // 找到最左边的比它大的元素
                int last = i;
                while (last >= 1 && height[i] <= height[last-1]) last = left[last-1];
                left[i] = last;
            }
    
            for (int i = n-2; i >= 0; i--) {
                // 找到最右边的比它大的元素
                int last = i;
                while (last < n - 1 && height[i] <= height[last+1]) last = right[last+1];
                right[i] = last;
            }
    
            int ans = 0;
            for (int i = 0; i < n; i++) ans = Math.max(ans,(right[i]-left[i]+1)*height[i]);
    
            return ans;
        }
    
    
        public static void main(String[] args) {
            Main test = new Main();
            Scanner sc = new Scanner(System.in);
            int n = sc.nextInt();
            int[] arr = new int[n];
            for (int i = 0; i < n; i++) arr[i] = sc.nextInt();
            System.out.println(test.largestArea(arr));
        }
    }
    
    • 1

    Information

    ID
    547
    Time
    1000ms
    Memory
    128MiB
    Difficulty
    (None)
    Tags
    # Submissions
    0
    Accepted
    0
    Uploaded By